An implicit Eulerian-Lagrangian WENO3 scheme for nonlinear conservation laws

نویسندگان

  • Todd Arbogast
  • Chieh-Sen Huang
چکیده

We present a new, formally third order, implicit Weighted Essentially NonOscillatory (iWENO3) finite volume scheme for solving systems of nonlinear conservation laws. We then generalize it to define an implicit Eulerian-Lagrangian WENO (iEL-WENO) scheme. Implicitness comes from the use of an implicit Runge-Kutta (RK) time integrator. A specially chosen two-stage RK method allows us to drastically simplify the computation of the intermediate RK fluxes, leading to a computationally tractable scheme. The iEL-WENO3 scheme has two main steps. The first accounts for particles being transported within a grid element in a Lagrangian sense along the particle paths. Since this particle velocity is unknown (in a nonlinear problem), a fixed trace velocity v is used. The second step of the scheme accounts for the inaccuracy of the trace velocity v by computing the flux of particles crossing the incorrect tracelines. The CFL condition is relaxed when v is chosen to approximate the characteristic velocity. A new Roe solver for the Euler system is developed to account for the Lagrangian tracings, which could be useful even for explicit EL-WENO schemes. Numerical results show that iEL-WENO3 is both less numerically diffusive and can take on the order of 2 to 5 times longer time steps than standard WENO3 for challenging nonlinear problems. An extension is made to the advection-diffusion equation. When advection dominates, the scheme retains its third order accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Stable numerical methods for conservation laws with discontinuous flux function

We develop numerical methods for solving nonlinear equations of conservation laws with flux function that depends on discontinuous coefficients. Using a relaxation approximation, the nonlinear equation is transformed to a semilinear diagonalizable problem with linear characteristic variables. Eulerian and Lagrangian methods are used for the advection stage while an implicit–explicit scheme solv...

متن کامل

Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: Analysis and application in one dimension

In this paper, we develop and analyze an arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) method with a time-dependent approximation space for one dimensional conservation laws, which satisfies the geometric conservation law. For the semi-discrete ALE-DG method, when applied to nonlinear scalar conservation laws, a cell entropy inequality, L2 stability and error estimates are prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017